Dual coding of siRNAs and miRNAs by plant transposable elements.
نویسندگان
چکیده
We recently proposed a specific model whereby miRNAs encoded from short nonautonomous DNA-type TEs known as MITEs evolved from corresponding ancestral full-length (autonomous) elements that originally encoded short interfering (siRNAs). Our miRNA-origins model predicts that evolutionary intermediates may exist as TEs that encode both siRNAs and miRNAs, and we analyzed Arabidopsis thaliana and Oryza sativa (rice) genomic sequence and expression data to test this prediction. We found a number of examples of individual plant TE insertions that encode both siRNAs and miRNAs. We show evidence that these dual coding TEs can be expressed as readthrough transcripts from the intronic regions of spliced RNA messages. These TE transcripts can fold to form the hairpin (stem-loop) structures characteristic of miRNA genes along with longer double-stranded RNA regions that typically are processed as siRNAs. Taken together with a recent study showing Drosha independent processing of miRNAs from Drosophila introns, our results indicate that ancestral miRNAs could have evolved from TEs prior to the full elaboration of the miRNA biogenesis pathway. Later, as the specific miRNA biogenesis pathway evolved, and numerous other expressed inverted repeat regions came to be recognized by the miRNA processing endonucleases, the host gene-related regulatory functions of miRNAs emerged. In this way, host genomes were afforded an additional level of regulatory complexity as a by-product of TE defense mechanisms. The siRNA-to-miRNA evolutionary transition is representative of a number of other regulatory mechanisms that evolved to silence TEs and were later co-opted to serve as regulators of host gene expression.
منابع مشابه
Cloning of novel repeat-associated small RNAs derived from hairpin precursors in Oryza sativa.
Plant small non-coding RNAs including microRNAs (miRNAs), small interfering RNAs (siRNAs) and trans-acting siRNAs, play important roles in modulating gene expression in cells. Here we isolated 21 novel endogenous small RNA molecules, ranging from 18 to 24 nucleotides, in Oryza sativa that can be mapped to 111 hairpin precursors. Further analysis indicated that most of these hairpin sequences or...
متن کاملAn atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes.
Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide p...
متن کاملGenome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize.
Maize (Zea mays) has an exceptionally complex genome with a rich history in both epigenetics and evolution. We report genomic landscapes of representative epigenetic modifications and their relationships to mRNA and small RNA (smRNA) transcriptomes in maize shoots and roots. The epigenetic patterns differed dramatically between genes and transposable elements, and two repressive marks (H3K27me3...
متن کاملDeep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata
Small non-coding RNAs such as miRNAs, piRNAs and endo-siRNAs fine-tune gene expression through post-transcriptional regulation, modulating important processes in development, differentiation, homeostasis and regeneration. Using deep sequencing, we have profiled small non-coding RNAs in Hydra magnipapillata and investigated changes in small RNA expression pattern during head regeneration. Our re...
متن کاملIdentification and characterization of endogenous small interfering RNAs from rice
RNA silencing-mediated small interfering RNAs (siRNAs) and microRNAs (miRNAs) have diverse natural roles, ranging from regulation of gene expression and heterochromatin formation to genome defense against transposons and viruses. Unlike miRNAs, endogenous siRNAs are generally not conserved between species; consequently, their identification requires experimental approaches. Thus far, endogenous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2008